Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Impact of Late Pleistocene climate variability on paleo-erosion rates in the western Himalaya
 
  • Details

Impact of Late Pleistocene climate variability on paleo-erosion rates in the western Himalaya

Source
Earth and Planetary Science Letters
ISSN
0012821X
Date Issued
2022-01-15
Author(s)
Dey, Saptarshi
Bookhagen, Bodo
Thiede, Rasmus C.
Wittmann, Hella
Chauhan, Naveen
Jain, Vikrant  
Strecker, Manfred R.
DOI
10.1016/j.epsl.2021.117326
Volume
578
Abstract
It has been proposed that at short timescales of 10<sup>2</sup>–10<sup>5</sup> yr, climatic variability can explain variations in sediment flux, but in orogens with pronounced climatic gradients rate changes caused by the oscillating efficiency in rainfall, runoff, and/or sediment transport and deposition are still not well-constrained. To explore landscape responses under variable climatic forcing, we evaluate time windows of prevailing sediment aggradation and related paleo-erosion rates from the southern flanks of the Dhauladhar Range in the western Himalaya. We compare past and present <sup>10</sup>Be-derived erosion rates of well-dated Late Pleistocene fluvial landforms and modern river sediments and reconstruct the sediment aggradation and incision history based on new luminescence data. Our results document significant variations in erosion rates ranging from 0.1 to 3.4 mm/yr over the Late Pleistocene. We find that, during times of weak monsoon intensity, the moderately steep areas (hillslope angles of 27 ± 13°) erode at lower rates of 0.1–0.4 mm/yr compared to steeper (>40°) crestal regions of the Dhauladhar Range that erode at 0.8−1.3 mm/yr. In contrast, during several millennia of stronger monsoon intensity, both the moderately steep and high slope areas record higher erosion rates (>1-3.4 mm/yr). Lithological clast-count analysis shows that this increase of erosion is focused in the moderately steep areas, where Lesser Himalayan rocks are exposed. Our data thus highlight the highly non-linear response of climatic forcing on landscape evolution and suggest complex depositional processes and sedimentary signals in downstream areas.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/25148
Subjects
cosmogenic nuclides | erosion | Himalaya | Indian summer monsoon | luminescence dating
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify