Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Electrical Engineering
  4. EE Publications
  5. Hetro8t: Power and area efficient approximate heterogeneous 8T SRAM for H.264 video decoder
 
  • Details

Hetro8t: Power and area efficient approximate heterogeneous 8T SRAM for H.264 video decoder

Source
Iet Computers and Digital Techniques
ISSN
17518601
Date Issued
2019-11-01
Author(s)
Bharti, Pramod Kumar
Surana, Neelam
Mekie, Joycee  
DOI
10.1049/iet-cdt.2019.0019
Volume
13
Issue
6
Abstract
Wide-spread availability of high-speed INTERNET and rapid increase of smart-phone users have significantly increased online video surfing. Video decoders like H.264/H.265/MPEG consume a significant amount of power in Static Random Access Memory (SRAM) buffers. In this study, the authors propose a 1 kb (32 × 32) heterogeneous 8T SRAM architectures with (2-lower order bits) and without truncation for H.264 video decoder. They have used heterogeneous sized SRAM design and bit-truncation techniques are used simultaneously to obtain low power memory design for the H.264 video decoder. They show that the proposed approximate memory used for H.264 video decoder provide high video quality even at low power and low area budget of 0.3 µW/pixel and 5.2 µm<sup>2</sup>/pixel, respectively, at 0.5 V and 20 MHz in UMC 28 nm CMOS technology. The proposed memory architecture is compared with existing approximate memories such as heterogeneous 6T, hybrid 8T/6T, all-identical 6T, and all-identical 8T SRAM memory. The results show that proposed memory architectures perform cumulatively better than existing techniques in terms of dynamic power, leakage power, and area.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/23145
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify