Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
 
  • Details

Deep gaussian processes for air quality inference

Source
arXiv
Date Issued
2022-11-01
Author(s)
Desai, Aadesh
Gujarathi, Eshan
Parikh, Saagar
Yadav, Sachin
Patel, Zeel B.
Batra, Nipun
Abstract
Air pollution kills around 7 million people annually, and approximately 2.4 billion people are exposed to hazardous air pollution. Accurate, fine-grained air quality (AQ) monitoring is essential to control and reduce pollution. However, AQ station deployment is sparse, and thus air quality inference for unmonitored locations is crucial. Conventional interpolation methods fail to learn the complex AQ phenomena. This work demonstrates that Deep Gaussian Process models (DGPs) are a promising model for the task of AQ inference. We implement Doubly Stochastic Variational Inference, a DGP algorithm, and show that it performs comparably to the state-of-the-art models.
URI
https://arxiv.org/abs/2211.10174
https://d8.irins.org/handle/IITG2025/19972
Subjects
AQ monitoring
Interpolation methods
DGPs
Doubly stochastic variational inference
Deep gaussian processes
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify