Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Impact of dense internals on fluid dynamic parameters in bubble column
 
  • Details

Impact of dense internals on fluid dynamic parameters in bubble column

Source
International Journal of Chemical Reactor Engineering
Date Issued
2018-01-01
Author(s)
Kalaga, Dinesh V.
Bhusare, Vishal
Pant, H. J.
Joshi, Jyeshtharaj B.
Roy, Shantanu
DOI
10.1515/ijcre-2018-0012
Volume
16
Issue
12
Abstract
Industrial gas-liquid processes such as oxidation, hydrogenation, Fischer-Trospch synthesis, liquid-phase methanol synthesis, and nuclear fission are exothermic in nature; the reactor of choice for such processes is, therefore, a bubble column equipped with heat exchanging internals. In addition to maintaining the desired process temperature, the heat exchanging vertical tube internals are used to control flow structures and liquid back mixing. The present work reports the experimentally measured gas hold-up, mean liquid velocity and liquid phase turbulent kinetic energy, using the Radioactive Particle Tracking (RPT) technique, in a 120 mm diameter bubble column equipped with dense vertical tube internals covering 23 % of the total cross-sectional area of the column. The effect of superficial gas velocity (44-265 mm/s) on gas hold-up, mean liquid velocity and turbulent kinetic energy is presented and discussed. It has been inferred from the experimental results that the vertical tube internal located at the center of the column plays a vital role in affecting the hydrodynamics when compared to the conventional internal configurations reported in the literature. For the chosen dense internal configuration, the cross-sectional distribution of the gas holdup, mean liquid velocity and turbulent kinetic energy show asymmetry for all the superficial gas velocities investigated. The overall gas holdup and the liquid turbulence increases with an increase in the superficial gas velocity. The strong liquid circulation velocities have been seen upon the insertion of the dense internals.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/22982
Subjects
Bubble column with internals | Gas hold-up | Liquid phase turbulence | Vertical tube internals
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify