Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. CLINet: A novel deep learning network for ECG signal classification
 
  • Details

CLINet: A novel deep learning network for ECG signal classification

Source
Journal of Electrocardiology
ISSN
00220736
Date Issued
2024-03-01
Author(s)
Mantravadi, Ananya
Saini, Siddharth
R., Sai Chandra Teja
Mittal, Sparsh
Shah, Shrimay
R., Sri Devi
Singhal, Rekha
DOI
10.1016/j.jelectrocard.2024.01.004
Volume
83
Abstract
Machine learning is poised to revolutionize medicine with algorithms that spot cardiac arrhythmia. An automated diagnostic approach can boost the efficacy of diagnosing life-threatening arrhythmia disorders in routine medical procedures. In this paper, we propose a deep learning network CLINet for ECG signal classification. Our network uses convolution, LSTM and involution layers to bring their unique advantages together. For both convolution and involution layers, we use multiple, large size kernels for multi-scale representation learning. CLINet does not require complicated pre-processing and can handle electrocardiograms of any length. Our network achieves 99.90% accuracy on the ICCAD dataset and 99.94% accuracy on the MIT-BIH dataset. With only 297 K parameters, our model can be easily embedded in smart wearable devices. The source code of CLINet is available at https://github.com/CandleLabAI/CLINet-ECG-Classification-2024.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/29025
Subjects
convolution | ECG signal classification | involution | LSTM | Machine learning
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify