Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Simple derivations on tensor product of polynomial algebras
 
  • Details

Simple derivations on tensor product of polynomial algebras

Source
Journal of Algebra and Its Applications
ISSN
02194988
Date Issued
2017-05-01
Author(s)
Kour, Surjeet
DOI
10.1142/S0219498817500839
Volume
16
Issue
5
Abstract
Let A be an unique factorization domain containing a field k of characteristic zero and let A[X] and A[Y ] be two k-algebras. Let d1 and d2 be two generalized triangular k-derivations of A[X] and A[Y ], respectively. Denote the unique k-derivation d1 ⊗ 1 + 1 ⊗ d2 of A[X,Y ] by d1 ⊕ d2. Then with some conditions on d1 and d2, it is shown that d1 ⊕ d2 is a simple derivation of A[X,Y ] if and only if A[X] is d1-simple and A[Y ] is d2-simple. We also show that if d1 and d2 are positively homogeneous derivations and d2 is a generalized triangular derivation, then d1 ⊕ d2 is simple derivation of A[X,Y ] if and only if d1 is a simple derivation of A[X] and d2 is a simple derivation of A[Y ].
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/21772
Subjects
d -simple ring | Derivation | Simple derivation
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify