Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. On the algebraic invariants of certain affine semigroup rings
 
  • Details

On the algebraic invariants of certain affine semigroup rings

Source
Semigroup Forum
ISSN
00371912
Date Issued
2023-02-01
Author(s)
Bhardwaj, Om Prakash
Sengupta, Indranath  
DOI
10.1007/s00233-022-10332-z
Volume
106
Issue
1
Abstract
Let a and d be two linearly independent vectors in N<sup>2</sup>, over the field of rational numbers. For a positive integer k≥ 2 , consider the sequence a, a+ d, … , a+ kd such that the affine semigroup S<inf>a</inf><inf>,</inf><inf>d</inf><inf>,</inf><inf>k</inf>= ⟨ a, a+ d, … , a+ kd⟩ is minimally generated. We study the properties of affine semigroup ring K[S<inf>a</inf><inf>,</inf><inf>d</inf><inf>,</inf><inf>k</inf>] associated to this semigroup. We prove that K[S<inf>a</inf><inf>,</inf><inf>d</inf><inf>,</inf><inf>k</inf>] is always Cohen-Macaulay and it is Gorenstein if and only if k= 2. For k= 2 , 3 , 4 , we explicitly compute the syzygies, the minimal graded free resolution and the Hilbert series of K[S<inf>a</inf><inf>,</inf><inf>d</inf><inf>,</inf><inf>k</inf>]. We also give a minimal generating set for the defining ideal of K[S<inf>a</inf><inf>,</inf><inf>d</inf><inf>,</inf><inf>k</inf>] which is also a Gröbner basis. Consequently, we prove that K[S<inf>a</inf><inf>,</inf><inf>d</inf><inf>,</inf><inf>k</inf>] is Koszul. Finally, we prove that the Castelnuovo–Mumford regularity of K[S<inf>a</inf><inf>,</inf><inf>d</inf><inf>,</inf><inf>k</inf>] is 1 for any a, d, k.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/25762
Subjects
Apéry set | Defining ideal | Regularity | Semigroup ring | Syzygies
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify