Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Computer Science and Engineering
  4. CSE Publications
  5. DCIL: Deep Contextual Internal Learning for image restoration and image retargeting
 
  • Details

DCIL: Deep Contextual Internal Learning for image restoration and image retargeting

Source
arXiv
Date Issued
2019-12-01
Abstract
Recently, there is a vast interest in developing methods which are independent of the training samples such as deep image prior, zero-shot learning, and internal learning. The methods above are based on the common goal of maximizing image features learning from a single image despite inherent technical diversity. In this work, we bridge the gap between the various unsupervised approaches above and propose a general framework for image restoration and image retargeting. We use contextual feature learning and internal learning to improvise the structure similarity between the source and the target images. We perform image resize application in the following setups: classical image resize using super-resolution, a challenging image resize where the low-resolution image contains noise, and content-aware image resize using image retargeting. We also provide comparisons to the relevant state-of-the-art methods.
URI
http://arxiv.org/abs/1912.04229
https://d8.irins.org/handle/IITG2025/19769
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify