Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Electrical Engineering
  4. EE Publications
  5. TensoIS: A Step Towards Feed-Forward Tensorial Inverse Subsurface Scattering for Perlin Distributed Heterogeneous Media
 
  • Details

TensoIS: A Step Towards Feed-Forward Tensorial Inverse Subsurface Scattering for Perlin Distributed Heterogeneous Media

Source
Computer Graphics Forum
ISSN
01677055
Date Issued
2025-01-01
Author(s)
Tiwari, Ashish
Bhardwaj, Satyam
Bachwana, Yash
Sahu, Parag Sarvoday
Ali, T. M.Feroz
Chintalapati, Bhargava
Raman, Shanmuganathan  
DOI
10.1111/cgf.70242
Abstract
Estimating scattering parameters of heterogeneous media from images is a severely under-constrained and challenging problem. Most of the existing approaches model BSSRDF either through an analysis-by-synthesis approach, approximating complex path integrals, or using differentiable volume rendering techniques to account for heterogeneity. However, only a few studies have applied learning-based methods to estimate subsurface scattering parameters, but they assume homogeneous media. Interestingly, no specific distribution is known to us that can explicitly model the heterogeneous scattering parameters in the real world. Notably, procedural noise models such as Perlin and Fractal Perlin noise have been effective in representing intricate heterogeneities of natural, organic, and inorganic surfaces. Leveraging this, we first create HeteroSynth, a synthetic dataset comprising photorealistic images of heterogeneous media whose scattering parameters are modeled using Fractal Perlin noise. Furthermore, we propose Tensorial Inverse Scattering (TensoIS), a learning-based feed-forward framework to estimate these Perlin-distributed heterogeneous scattering parameters from sparse multi-view image observations. Instead of directly predicting the 3D scattering parameter volume, TensoIS uses learnable low-rank tensor components to represent the scattering volume. We evaluate TensoIS on unseen heterogeneous variations over shapes from the HeteroSynth test set, smoke and cloud geometries obtained from open-source realistic volumetric simulations, and some real-world samples to establish its effectiveness for inverse scattering. Overall, this study is an attempt to explore Perlin noise distribution, given the lack of any such well-defined distribution in literature, to potentially model real-world heterogeneous scattering in a feed-forward manner. Project Page: https://yashbachwana.github.io/TensoIS/.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/33325
Keywords
CCS Concepts | • Computing methodologies → Computer graphics
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify