Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Physics
  4. PHY Publications
  5. Crystalline phases of laser-driven dipolar Bose-Einstein condensates
 
  • Details

Crystalline phases of laser-driven dipolar Bose-Einstein condensates

Source
arXiv
ISSN
2331-8422
Date Issued
2022-07-01
Author(s)
Mishra, Chinmayee
Ostermann, Stefan
Mivehvar, Farokh
Venkatesh, B. Prasanna
Abstract
Although crystallization is a ubiquitous phenomenon in nature, crystal formation and melting still remain fascinating processes with several open questions yet to be addressed. In this work, we study the emergent crystallization of a laser-driven dipolar Bose-Einstein condensate due to the interplay between long-range magnetic and effectively infinite-range light-induced interactions. The competition between these two interactions results in a collective excitation spectrum with two roton minima that introduce two different length scales at which crystalline order can emerge. In addition to the formation of regular crystals with simple periodic patterns due to the softening of one of the rotons, we find that both rotons can also soften simultaneously, resulting in the formation of exotic, complex periodic or aperiodic density patterns. We also demonstrate dynamic state-preparation schemes for achieving all the found crystalline ground states for experimentally relevant and feasible parameter regimes.
URI
http://arxiv.org/abs/2207.01650
https://d8.irins.org/handle/IITG2025/18494
Subjects
Crystallization
Melting
Fascinating processes
Excitation spectrum
Simple periodic patterns
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify