Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Mathematics
  4. MATH Publications
  5. On the algebraic invariants of certain affine semigroup algebras
 
  • Details

On the algebraic invariants of certain affine semigroup algebras

Source
arXiv
Date Issued
2022-07-01
Author(s)
Bhardwaj, Om Prakash
Sengupta, Indranath
Abstract
Let a and d be two linearly independent vectors in N2, over the field of rational numbers.For a positive integer k ?2, consider the sequencea, a+d, . . . , a+kdsuch that the affine semigroupSa,d,k=?a, a+d, . . . , a+kd?is minimally generated by this sequence. We study the properties of affinesemigroup algebra k[Sa,d,k] associated to this semigroup. We prove thatk [Sa,d,k] is always Cohen Macaulay and it is Gorenstein if and only if k= 2. Fork= 2,3,4, we explicitly compute the syzygies,minimal graded free resolution and Hilbert series of k[Sa,d,k]. We also give a minimal generating setand a Gr ?obner basis of the defining ideal of k[Sa,d,k]. Consequently, we prove that k[Sa,d,k] is Koszul. Finally, we prove that the Castelnuovo-Mumford regularity of k[Sa,d,k] is1 for any a, d, k.
URI
http://arxiv.org/abs/2207.02675
http://repository.iitgn.ac.in/handle/IITG2025/20138
Subjects
Algebraic invariants
Affine semigroup
Hilbert series
Gorenstein
Castelnuovo-Mumford
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify