Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Biological Sciences and Engineering
  4. BSE Publications
  5. Diphenyl triazine hybrids inhibit α-synuclein fibrillogenesis: Design, synthesis and in vitro efficacy studies
 
  • Details

Diphenyl triazine hybrids inhibit α-synuclein fibrillogenesis: Design, synthesis and in vitro efficacy studies

Source
European Journal of Medicinal Chemistry
ISSN
02235234
Date Issued
2020-12-01
Author(s)
Maqbool, Mudasir
Gadhavi, Joshna
Hivare, Pravin
Gupta, Sharad  
Hoda, Nasimul
DOI
10.1016/j.ejmech.2020.112705
Volume
207
Abstract
Aggregation of α-synuclein (α-syn) is one of the central hypotheses for Parkinson's disease (PD), therefore, its inhibition and disaggregation is an optimistic approach for the treatment of PD. Here, we report design, synthesis and in-vitro efficacy studies of a series of diphenyl triazine hybrids as potential inhibitors of α-syn fibrillogenesis. From the docking studies, we concluded that compounds A1, A2, A4, A8 and A9 display promising binding affinity with the essential residues of α-syn with binding energy values: −6.0, −7.0, −6.3, −6.6 and −6.7 kcal/mol respectively. The target compounds were synthesized using multistep organic synthesis reactions. Compounds A1, A2 A4, A8 and A9 showed a significant lowering of the α-syn fibril formation during Thioflavin-T assay and fluorescence microscopy. In addition, these compounds A1, A2, A4, A8 and A9 also proved to be good disaggregators in the pre-aggregated form of α-syn. Most of the compounds exhibited no cytotoxicity in mouse embryonic fibroblast (MEF) and human adenocarcinomic alveolar basal epithelial cells (A549) except A2. Overall, diphenyl triazine-based compounds can be further investigated for the treatment of synucleinopathies and for Lewy body dementia in which α-syn is predominantly observed.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/23856
Subjects
Diphenyltriazine | Drug design | Neurodegeneration | Parkinson's disease | Protein aggregation | Synthesis
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify