Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Zeros of partial sums of L-functions
 
  • Details

Zeros of partial sums of L-functions

Source
Advances in Mathematics
ISSN
00018708
Date Issued
2019-04-13
Author(s)
Roy, Arindam
Vatwani, Akshaa  
DOI
10.1016/j.aim.2019.02.009
Volume
346
Abstract
We consider a certain class of multiplicative functions f:N→C. Let F(s)=∑ <inf>n=1</inf> <sup>∞</sup> f(n)n <sup>−s</sup> be the associated Dirichlet series and F <inf>N</inf> (s)=∑ <inf>n≤N</inf> f(n)n <sup>−s</sup> be the truncated Dirichlet series. In this setting, we obtain new Halász-type results for the logarithmic mean value of f. More precisely, we prove estimates for the sum ∑ <inf>n=1</inf> <sup>x</sup> f(n)/n in terms of the size of |F(1+1/log⁡x)| and show that these estimates are sharp. As a consequence of our mean value estimates, we establish non-trivial zero-free regions for the partial sums F <inf>N</inf> (s). In particular, we study the zero distribution of partial sums of the Dedekind zeta function of a number field K. More precisely, we give some improved results for the number of zeros up to height T as well as new zero density results for the number of zeros up to height T, lying to the right of Re(s)=σ where σ≥1/2.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/23312
Subjects
Dedekind zeta function | Dirichlet polynomials | Distribution of zeros | L-functions | Mean values of multiplicative functions | Zeros of exponential sums
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify