Tangent cones of concatenated numerical semigroups

Show simple item record

dc.contributor.author Mehta, Ranjana
dc.contributor.author Saha, Joydip
dc.contributor.author Sengupta, Indranath
dc.coverage.spatial United States of America
dc.date.accessioned 2025-06-20T08:01:06Z
dc.date.available 2025-06-20T08:01:06Z
dc.date.issued 2025-06
dc.identifier.citation Mehta, Ranjana; Saha, Joydip and Sengupta, Indranath, "Tangent cones of concatenated numerical semigroups", arXiv, Cornell University Library, DOI: arXiv:2506.09400, Jun. 2025.
dc.identifier.uri https://doi.org/10.48550/arXiv.2506.09400
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/11550
dc.description.abstract We study the tangent cone at the origin and the Hilbert series for a family of numerical semigroups generated by concatenation of arithmetic sequences. We prove that all the concatenation classes have Cohen-Macaulay tangent cones except the symmetric class, however, the symmetric class does satisfy Rossi's conjecture.
dc.description.statementofresponsibility by Ranjana Mehta, Joydip Saha and Indranath Sengupta
dc.language.iso en_US
dc.publisher Cornell University Library
dc.title Tangent cones of concatenated numerical semigroups
dc.type Article
dc.relation.journal arXiv


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account