The generalized modified Bessel function Kz,w(x) at z=1/2 and Humbert functions,

Show simple item record

dc.contributor.author Kumar, Rahul
dc.date.accessioned 2018-10-20T08:05:51Z
dc.date.available 2018-10-20T08:05:51Z
dc.date.issued 2018-10
dc.identifier.citation Kumar, Rahul, "The generalized modified Bessel function Kz,w(x) at z=1/2 and Humbert functions", arXiv, Cornell University Library, DOI: arXiv:1810.03093, Oct. 2018. en_US
dc.identifier.uri http://arxiv.org/abs/1810.03093
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/3947
dc.description.abstract Recently Dixit, Kesarwani, and Moll introduced a generalization Kz,w(x) of the modified Bessel function Kz(x) and showed that it satisfies an elegant theory similar to Kz(x). In this paper, we show that while K12(x) is an elementary function, K12,w(x) can be written in the form of an infinite series of Humbert functions. As an application of this result, we generalize the transformation formula for the logarithm of the Dedekind eta function ?(z).
dc.description.statementofresponsibility by Rahul Kumar
dc.language.iso en en_US
dc.publisher Cornell University Library en_US
dc.subject Classical Analysis en_US
dc.subject ODEs en_US
dc.title The generalized modified Bessel function Kz,w(x) at z=1/2 and Humbert functions, en_US
dc.type Preprint en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account