Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Chemical Engineering
  4. CHE Publications
  5. Role of polymer graft stiffness in electrostatic-driven self-assembly of nanoparticles in solutions
 
  • Details

Role of polymer graft stiffness in electrostatic-driven self-assembly of nanoparticles in solutions

Source
Physical Chemistry Chemical Physics
ISSN
14639076
Date Issued
2025-01-02
Author(s)
Pothukuchi, Rajesh Pavan
Radhakrishna, Mithun  
DOI
10.1039/d4cp03669g
Volume
27
Issue
5
Abstract
Self-assembly of nanoparticles (NPs) in solution has garnered tremendous attention among researchers because of their electrical, chemical, and optoelectronic properties at the macroscale with potential applications in bio-imaging, bio-medicine, and therapeutics. Control of size, shape, and composition at the nanoscale is important in tuning the material’s bulk properties. The grafting of NPs with polymers enables us to tune such bulk material properties at the nano level by controlling their assemblies, especially in solutions. The stiffness of grafts plays a crucial role in tuning the self-assembly of spherical NPs grafted with polyions (PGNs). Many recent studies based on single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) showed the potential applications of such assemblies. In this work, we have performed coarse-grained molecular dynamics (MD) simulations to understand the charge-driven self-assembly of PGNs by varying stiffness of polymer grafts, the grafting density, and graft length. Self-assembly of these PGNs leads to the formation of different structures driven by the rigidity of polyion chains and the electrostatic interactions. A dramatic change in morphological transitions can be achieved, ranging from rings, strings, and percolated structures and ordered to disordered aggregates by tuning the control parameters. The percolated structures form disordered structures upon annealing with potential applications in thermal under filling, neuromorphic devices, and biological systems including drug delivery, and therapeutics.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/28287
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify