Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Fully nonlinear degenerate equations with applications to Grad equations
 
  • Details

Fully nonlinear degenerate equations with applications to Grad equations

Source
Electronic Journal of Qualitative Theory of Differential Equations
Date Issued
2024-01-01
Author(s)
Oza, Priyank
DOI
10.14232/EJQTDE.2024.1.26
Volume
2024
Abstract
We consider a class of degenerate elliptic fully nonlinear equations with applications to Grad equations: { |Du|<sup>γ</sup> M<sup>+</sup> (λ,Λ<inf>D</inf><sup>2</sup> u(x)<sup>)</sup> = f<sup>(</sup> |u ≥ u(x)|<sup>)</sup> in Ω u = g on ∂Ω, where γ ≥ 1 is a constant, Ω is a bounded domain in R<sup>N</sup> with C<sup>1,1</sup> boundary. We prove the existence of a W<sup>2,p</sup>-viscosity solution to the above equation, which degenerates when the gradient of the solution vanishes.
Publication link
https://doi.org/10.14232/ejqtde.2024.1.26
URI
http://repository.iitgn.ac.in/handle/IITG2025/29103
Subjects
Dirichlet boundary value problem | fully nonlinear degenerate elliptic equations | Pucci’s ex-tremal operator | viscosity solution
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify