Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Semantic description of a video using representative frames
 
  • Details

Semantic description of a video using representative frames

Source
2015 5th National Conference on Computer Vision Pattern Recognition Image Processing and Graphics Ncvpripg 2015
Date Issued
2016-06-10
Author(s)
Jindal, Ishan
Raman, Shanmuganathan  
DOI
10.1109/NCVPRIPG.2015.7490054
Abstract
Analysis of a very long video and semantically describe the contents is a challenging task in computer vision. The present approaches such as video shot detection and summarization address this problem partially while maintaining the temporal coherency. To reduce the user efforts for seeing the whole video we have introduced a new technique which combines similar content irrespective of their presence at different time instants. In this approach, we automatically identify only the representative frames corresponding to similar scenes which were captured at different instants of time. We also provide the labels of the objects that are present in the representative frames along with the compact representation for the video. We achieve the task of semantic labelling of frames in a unified framework using a deep learning framework involving pre-trained features through a convolutional neural network. We show that the proposed approach is able to address the semantic labelling effectively as justified by the results obtained for videos of different scenes captured through different modalities.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/21886
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify