Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Physics
  4. PHY Publications
  5. Collective Effects in Casimir-Polder Forces
 
  • Details

Collective Effects in Casimir-Polder Forces

Source
Physical Review Letters
ISSN
00319007
Date Issued
2018-11-01
Author(s)
Sinha, Kanupriya
Venkatesh, B. Prasanna  
Meystre, Pierre
DOI
10.1103/PhysRevLett.121.183605
Volume
121
Issue
18
Abstract
We study cooperative phenomena in the fluctuation-induced forces between a surface and a system of neutral two-level quantum emitters prepared in a coherent collective state, showing that the total Casimir-Polder force on the emitters can be modified via their mutual correlations. Particularly, we find that a one-dimensional chain of emitters prepared in a super- or subradiant state experiences an enhanced or suppressed collective vacuum-induced force, respectively. The collective nature of dispersion forces can be understood as resulting from the interference between the different processes contributing to the surface-modified resonant dipole-dipole interaction. Such cooperative fluctuation forces depend singularly on the surface response at the resonance frequency of the emitters, thus being easily maneuverable. Our results demonstrate the potential of collective phenomena as a new tool to selectively tailor vacuum forces.
Publication link
https://arxiv.org/pdf/1803.00977
URI
http://repository.iitgn.ac.in/handle/IITG2025/22722
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify