Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Computer Science and Engineering
  4. CSE Publications
  5. SCIDQA: A Deep Reading Comprehension Dataset over Scientific Papers
 
  • Details

SCIDQA: A Deep Reading Comprehension Dataset over Scientific Papers

Source
Emnlp 2024 2024 Conference on Empirical Methods in Natural Language Processing Proceedings of the Conference
Date Issued
2024-01-01
Author(s)
Singh, Shruti
Sarkar, Nandan
Cohan, Arman
DOI
10.18653/v1/2024.emnlp-main.1163
Abstract
Scientific literature is typically dense, requiring significant background knowledge and deep comprehension for effective engagement. We introduce SCIDQA, a new dataset for reading comprehension that challenges language models to deeply understand scientific articles, consisting of 2,937 QA pairs. Unlike other scientific QA datasets, SCIDQA sources questions from peer reviews by domain experts and answers by paper authors, ensuring a thorough examination of the literature. We enhance the dataset's quality through a process that carefully decontextualizes the content, tracks the source document across different versions, and incorporates a bibliography for multi-document question-answering. Questions in SCIDQA necessitate reasoning across figures, tables, equations, appendices, and supplementary materials, and require multi-document reasoning. We evaluate several open-source and proprietary LLMs across various configurations to explore their capabilities in generating relevant and factual responses, as opposed to simple review memorization. Our comprehensive evaluation, based on metrics for surface-level and semantic similarity, highlights notable performance discrepancies. SCIDQA represents a rigorously curated, naturally derived scientific QA dataset, designed to facilitate research on complex reasoning within the domain of question answering for scientific texts.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/28503
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify