Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Machine Learning for New Physics Searches in B0 → K∗0μ+μ− Decays
 
  • Details

Machine Learning for New Physics Searches in B0 → K∗0μ+μ− Decays

Source
Proceedings of Science
Date Issued
2025-04-29
Author(s)
Dubey, S.
Browder, T. E.
Kohani, S.
Mandal, R.  
Sibidanov, A.
Sinha, R.
Volume
476
Abstract
We report on a novel application of computer vision techniques to extract beyond the Standard Model (BSM) parameters directly from high energy physics (HEP) flavor data. We develop a method of transforming angular and kinematic distributions into “quasi-images" that can be used to train a convolutional neural network to perform regression tasks, similar to fitting. This contrasts with the usual classification functions performed using ML/AI in HEP. As a proof-of-concept, we train a 34-layer Residual Neural Network (ResNet) to regress on these images and determine the Wilson Coefficient C<inf>9</inf> in MC (Monte Carlo) simulations of B<sup>0</sup> → K<sup>∗</sup> μ<sup>+</sup> μ<sup>−</sup> decays. The technique described here can be generalized and may find applicability across various HEP experiments and elsewhere.
URI
https://d8.irins.org/handle/IITG2025/28166
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify