Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Physics
  4. PHY Publications
  5. Machine Learning for New Physics Searches in B0 → K∗0μ+μ− Decays
 
  • Details

Machine Learning for New Physics Searches in B0 → K∗0μ+μ− Decays

Source
Proceedings of Science
Date Issued
2025-04-29
Author(s)
Dubey, S.
Browder, T. E.
Kohani, S.
Mandal, R.  
Sibidanov, A.
Sinha, R.
Volume
476
Abstract
We report on a novel application of computer vision techniques to extract beyond the Standard Model (BSM) parameters directly from high energy physics (HEP) flavor data. We develop a method of transforming angular and kinematic distributions into “quasi-images" that can be used to train a convolutional neural network to perform regression tasks, similar to fitting. This contrasts with the usual classification functions performed using ML/AI in HEP. As a proof-of-concept, we train a 34-layer Residual Neural Network (ResNet) to regress on these images and determine the Wilson Coefficient C<inf>9</inf> in MC (Monte Carlo) simulations of B<sup>0</sup> → K<sup>∗</sup> μ<sup>+</sup> μ<sup>−</sup> decays. The technique described here can be generalized and may find applicability across various HEP experiments and elsewhere.
URI
http://repository.iitgn.ac.in/handle/IITG2025/28166
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify