Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Cognitive and Brain Sciences
  4. CBS Publications
  5. Task relevance selectively modulates sensorimotor adaptation in the presenceof multiple prediction errors
 
  • Details

Task relevance selectively modulates sensorimotor adaptation in the presenceof multiple prediction errors

Source
Journal of Neurophysiology
Date Issued
2025-11
Author(s)
Shingane, Somesh N.
Rao, Nishant
Kumar, Neeraj
Mutha, Pratik K.  
DOI
10.1152/jn.00511.2024
Volume
134
Issue
5
Abstract
Adaptation to consistently occurring sensorimotor errors is considered obligatory in nature. We probed the robustness of this finding by asking if humans can selectively attenuate adaptation based on the task-relevance of error signals. Subjects made planar reaches to three different targets: an arc (experiment 1), a bar (experiment 2), and a point (experiment 3). During the reach, perturbations in extent (visuomotor gain), direction (visuomotor rotation), or both simultaneously were employed. In experiment 1, subjects showed robust adaptation to the rotation when reaching to the arc, even though the presence of this perturbation was irrelevant for the achievement of the task goal. Interestingly, however, rotation adaptation was strongly attenuated when it was presented simultaneously with a task-relevant gain perturbation. In experiment 2, which involved reaches to the bar, again, subjects successfully adapted to the task-irrelevant gain perturbation when it occurred in isolation. However, adaptation was attenuated when the gain co-occurred with a task-relevant rotation. Experiment 3 revealed that the attenuation observed in the first two experiments was not due to an inability to adapt to co-occurring rotation and gain perturbations. Collectively, our results suggest that the sensorimotor system selectively tunes learning in the presence of multiple error signals, a finding that can potentially be explained by a biased competition mechanism. That is, given limited processing capacity, a salient attribute�the relevance of the error to the task goal in this case�is prioritized for processing and drives subsequent adaptive changes in motor output.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/33499
Subjects
Biased competition
Motor adaptation
Prediction error
Task-relevance
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify