Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Electrical Engineering
  4. EE Publications
  5. HDR-cGAN: Single LDR to HDR image translation using conditional GAN
 
  • Details

HDR-cGAN: Single LDR to HDR image translation using conditional GAN

Source
ACM International Conference Proceeding Series
Date Issued
2021-11-20
Author(s)
Raipurkar, Prarabdh
Pal, Rohil
Raman, Shanmuganathan  
DOI
10.1145/3490035.3490275
Abstract
The prime goal of digital imaging techniques is to reproduce the realistic appearance of a scene. Low Dynamic Range (LDR) cameras are incapable of representing the wide dynamic range of the real-world scene. The captured images turn out to be either too dark (underexposed) or too bright (overexposed). Specifically, saturation in overexposed regions makes the task of reconstructing a High Dynamic Range (HDR) image from single LDR image challenging. In this paper, we propose a deep learning based approach to recover details in the saturated areas while reconstructing the HDR image. We formulate this problem as an image-to-image (I2I) translation task. To this end, we present a novel conditional GAN (cGAN) based framework trained in an end-to-end fashion over the HDR-REAL and HDR-SYNTH datasets. Our framework uses an overexposed mask obtained from a pre-trained segmentation model to facilitate the hallucination task of adding details in the saturated regions. We demonstrate the effectiveness of the proposed method by performing an extensive quantitative and qualitative comparison with several state-of-the-art single-image HDR reconstruction techniques.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/26354
Subjects
Computational photography | Generative adversarial networks | High dynamic range imaging
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify