Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Physics
  4. PHY Publications
  5. Gravitational wave from extreme mass-ratio inspirals as a probe of extra dimensions
 
  • Details

Gravitational wave from extreme mass-ratio inspirals as a probe of extra dimensions

Source
arXiv
ISSN
2331-8422
Date Issued
2022-12-01
Author(s)
Rahman, Mostafizur
Kumar, Shailesh
Bhattacharyya, Arpan  
Abstract
The field of gravitational waves is rapidly progressing due to the noticeable advancements in the sensitivity of gravitational-wave detectors that has enabled the detection prospects of binary black hole mergers. Extreme mass ratio inspiral (EMRI) is one of the most compelling and captivating binary systems in this direction, with the detection possibility by the future space-based gravitational wave detector. In this article, we consider an EMRI system where the primary or the central object is a spherically symmetric static braneworld black hole that carries a \textit{tidal charge} Q. We estimate the effect of the tidal charge on total gravitational wave flux and orbital phase due to a non-spinning secondary inspiralling the primary. We further highlight the observational implications of the tidal charge in EMRI waveforms. We show that LISA (Laser Interferometer Space Antenna) observations can put a much stronger constraint on this parameter than black hole shadow and ground-based gravitational wave observations, which can potentially probe the existence of extra dimensions.
URI
https://arxiv.org/abs/2212.01404
http://repository.iitgn.ac.in/handle/IITG2025/18488
Subjects
Gravitational wave
Black hole mergers
EMRI
Tidal charge
LISA
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify