Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. On the bifurcation results for fractional Laplace equations
 
  • Details

On the bifurcation results for fractional Laplace equations

Source
Mathematische Nachrichten
ISSN
0025584X
Date Issued
2017-11-01
Author(s)
Dwivedi, G.
Tyagi, J.  
Verma, R. B.
DOI
10.1002/mana.201600250
Volume
290
Issue
16
Abstract
In this paper, we consider the bifurcation problem for the fractional Laplace equation (Formula presented.) where Ω ⊂ R<sup>n</sup> , n > 2s (0 < s < 1) is an open bounded subset with smooth boundary, (−∆)<sup>s</sup> stands for the fractional Laplacian. We show that a continuum of solutions bifurcates out from the principal eigenvalue λ<inf>1</inf> of the problem (Formula presented.) and, conversely.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/22358
Subjects
35A15 | 35B32 | 47G20 | bifurcation | fractional Laplacian | integrodifferential operators | Variational methods
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify