Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Electrical Engineering
  4. EE Publications
  5. Multi-element Metagrating Design With Densely-connected Neural Networks
 
  • Details

Multi-element Metagrating Design With Densely-connected Neural Networks

Source
2021 IEEE Photonics Conference IPC 2021 Proceedings
Date Issued
2021-01-01
Author(s)
Panda, Soumyashree S.
Tandan, Harshul
Hegde, Ravi S.  
DOI
10.1109/IPC48725.2021.9593040
Abstract
Although metasurfaces offer unprecedented design flexibility, the discovery of optimal structures remains a challenging problem where techniques like Deep learning are becoming significant. We propose novel neural architectures beyond the traditionally employed feedforward architectures and explore their utility in the design of multiple-element metagratings.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/26369
Subjects
Deep learning | Metasurface design | Photonics inverse design
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify