Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Materials Engineering
  4. MSE Publications
  5. Can Microcavitated Slippery Surfaces Outperform Micropillared and Untextured?
 
  • Details

Can Microcavitated Slippery Surfaces Outperform Micropillared and Untextured?

Source
Langmuir
ISSN
07437463
Date Issued
2024-10-22
Author(s)
Samanta, Ratnadeep
Rowthu, Sriharitha  
DOI
10.1021/acs.langmuir.4c02956
Volume
40
Issue
42
Abstract
Surface features’ morphology is crucial in designing lubricant-infused slippery surfaces (LIS). Microcavities were hypothesized to provide lower physical pinning, reduced droplet normal adhesion, and superior lubricant retention as compared to micropillars and untextured surfaces. Micropillars and microcavities (h = 10 ± 3 μm, d = 8 ± 1 μm, p = 17 ± 3 μm, r<inf>w</inf> = 1.4 ± 0.2) were replicated on polydimethylsiloxane from Lotus leaf and were coated with 1000 cSt silicone oil films (530 nm-27 μm thick). Water wetting, water-oil thermodynamic stability, droplet’s normal adhesion and oil shear drainage properties were investigated to evaluate the relative performance of microcavitated, micropillared and untextured LIS. For ≤7 μm thick oil films, cavitated and untextured LIS displayed superior slippery properties than micropillared LIS (16 ± 1°, 7 ± 1°, 30 ± 4° slide-off angles respectively). Also, normal adhesion is of the order: cavities < untextured < pillars, and smaller than their dry counterparts. Furthermore, the oil retention efficiency under the action of centrifugal forces and continuous shear flow of water is of the order: pillars > cavities > untextured. Thus, it can be concluded that microcavitated LIS can outperform micropillared and untextured LIS.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/28697
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify