Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Chemical Engineering
  4. CHE Publications
  5. Fast-Moving Self-Propelled Droplets of a Nanocatalyzed Belousov-Zhabotinsky Reaction
 
  • Details

Fast-Moving Self-Propelled Droplets of a Nanocatalyzed Belousov-Zhabotinsky Reaction

Source
Langmuir
ISSN
07437463
Date Issued
2021-11-02
Author(s)
Kumar, D. Jaya Prasanna
Borkar, Chaitra
Dayal, Pratyush  
DOI
10.1021/acs.langmuir.1c01887
Volume
37
Issue
43
Abstract
Self-sustained locomotion by virtue of an internalized chemical reaction is a characteristic feature of living systems and has inspired researchers to develop such self-moving biomimetic systems. Here, we harness a self-oscillating Belousov-Zhabotinsky (BZ) reaction, a well-known chemical oscillator, with enhanced kinetics by virtue of our graphene-based catalytic mats, to elucidate the spontaneous locomotion of BZ reaction droplets. Specifically, our nanocatalysts comprise ruthenium nanoparticle decorations on graphene oxide, reduced graphene oxide, and graphene nanosheets, thereby creating 0D-2D heterostructures. We demonstrate that when these nanocatalyzed droplets of the BZ reaction are placed in an oil-surfactant medium, they exhibit a macroscopic translatory motion at the velocities of few millimeters per second. This motion is brought about by the combination of enhanced kinetics of the BZ reaction and the Marangoni effect. Our investigations reveal that the velocity of locomotion increases with the electrical conductivity of our nanocomposites. Moreover, we also show that the positive feedback generated by the reaction-diffusion phenomena results in an asymmetric distribution of surface tension that, in turn, facilitates the self-propelled motion of the BZ droplets. Finally, we explore a system of multiple nanocatalyzed BZ droplets and reveal a variety of motions caused by their mutual interactions. Our findings suggest that through the use of 0D-2D hybrid nanomaterials, it is possible to design fast-moving self-propelled synthetic objects for a variety of biomimetic applications.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/25225
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify