Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Computer Science and Engineering
  4. CSE Publications
  5. D-STACK: high throughput DNN inference by effective multiplexing and spatio-temporal scheduling of GPUs
 
  • Details

D-STACK: high throughput DNN inference by effective multiplexing and spatio-temporal scheduling of GPUs

Date Issued
2023-03-01
Author(s)
Dhakal, Aditya
Kulkarni, Sameer G.  
Ramakrishnan, K. K.
Abstract
Hardware accelerators such as GPUs are required for real-time, low-latency inference with Deep Neural Networks (DNN). However, due to the inherent limits to the parallelism they can exploit, DNNs often under-utilize the capacity of today's high-end accelerators. Although spatial multiplexing of the GPU, leads to higher GPU utilization and higher inference throughput, there remain a number of challenges. Finding the GPU percentage for right-sizing the GPU for each DNN through profiling, determining an optimal batching of requests to balance throughput improvement while meeting application-specific deadlines and service level objectives (SLOs), and maximizing throughput by appropriately scheduling DNNs are still significant challenges. This paper introduces a dynamic and fair spatio-temporal scheduler (D-STACK) that enables multiple DNNs to run in the GPU concurrently. To help allocate the appropriate GPU percentage (we call it the "Knee"), we develop and validate a model that estimates the parallelism each DNN can utilize. We also develop a lightweight optimization formulation to find an efficient batch size for each DNN operating with D-STACK. We bring together our optimizations and our spatio-temporal scheduler to provide a holistic inference framework. We demonstrate its ability to provide high throughput while meeting application SLOs. We compare D-STACK with an ideal scheduler that can allocate the right GPU percentage for every DNN kernel. D-STACK gets higher than 90 percent throughput and GPU utilization compared to the ideal scheduler. We also compare D-STACK with other GPU multiplexing and scheduling methods (e.g., NVIDIA Triton, Clipper, Nexus), using popular DNN models. Our controlled experiments with multiplexing several popular DNN models achieve up to 1.6X improvement in GPU utilization and up to 4X improvement in inference throughput.
URI
https://arxiv.org/abs/2304.13541c
http://repository.iitgn.ac.in/handle/IITG2025/19846
Subjects
D-STACK
DNN inference
Multiplexing
Spatio-temporal scheduling
GPUs
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify