Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Mathematics
  4. MATH Publications
  5. The generalized modified Bessel function and its connection with Voigt line profile and Humbert functions
 
  • Details

The generalized modified Bessel function and its connection with Voigt line profile and Humbert functions

Source
Advances in Applied Mathematics
ISSN
01968858
Date Issued
2020-03-01
Author(s)
Kumar, Rahul
DOI
10.1016/j.aam.2019.101986
Volume
114
Abstract
Recently Dixit, Kesarwani, and Moll introduced a generalization K<inf>z,w</inf>(x) of the modified Bessel function K<inf>z</inf>(x) and showed that it satisfies an elegant theory similar to that of K<inf>z</inf>(x). In this paper, we show that while [Formula presented] is an elementary function, [Formula presented] can be written in the form of an infinite series of Humbert functions. As an application of this result, we generalize the transformation formula for the logarithm of the Dedekind eta function η(z). We also establish a connection between [Formula presented] and the cumulative distribution function corresponding to the Voigt line profile.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/23076
Subjects
Distribution function | Generalized modified Bessel function | Humbert function | Voigt profile
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify