Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Oxidative steam reforming of ethanol on rhodium catalyst – I: Spatially resolved steady-state experiments and microkinetic modeling
 
  • Details

Oxidative steam reforming of ethanol on rhodium catalyst – I: Spatially resolved steady-state experiments and microkinetic modeling

Source
International Journal of Hydrogen Energy
ISSN
03603199
Date Issued
2017-04-13
Author(s)
Baruah, Renika
Dixit, Marm
Parejiya, Anand
Basarkar, Pratik
Bhargav, Atul  
Sharma, Sudhanshu  
DOI
10.1016/j.ijhydene.2017.03.168
Volume
42
Issue
15
Abstract
Oxidative steam reforming of ethanol is an important process for on board production of hydrogen in fuel cell based auxiliary power systems. Although the process has been extensively studied from a catalyst perspective, accurate models that capture species and temperature information required by model-based control algorithms during operation have not yet been developed adequately. In this work, we develop a reduced micro-kinetic model for ethanol oxidative steam reforming, which can be used in computational fluid dynamics (CFD) studies and subsequently to develop model-based control strategies. We experimentally study cordierite monolith based reactors in which Rh/CeO<inf>2</inf> catalysts are prepared by the solution-combustion method. The catalyst system is characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), temperature programmed reduction and temperature programmed desorption analyses. The experimental reformer design enables measurement of species concentrations at various points along the reactor length, along with radial temperature profiles. A micro-kinetic model is adapted from the literature and validated against these experiments, with good agreement. The model results suggest a linear activation pathway for ethanol over rhodium catalysts by forming ethoxide, acetyl and acetate intermediates. After formation of single carbon species, the methane reforming pathway is followed. We expect that these studies, when coupled with transient studies will help in formulating model-based control strategies for ethanol reformers in complex fuel cell systems.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/22494
Subjects
Ethanol | Microkinetic | Modeling | Monolith | Reforming
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify