Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Training-Free Parameter Extraction for Compact Device Models Using Sequential Bayesian Optimization With Adaptive Sampling
 
  • Details

Training-Free Parameter Extraction for Compact Device Models Using Sequential Bayesian Optimization With Adaptive Sampling

Source
IEEE Transactions on Electron Devices
ISSN
00189383
Date Issued
2024-01-01
Author(s)
Maheshwari, Om
Singh, Aishwarya
Mohapatra, Nihar R.  
DOI
10.1109/TED.2024.3478177
Volume
71
Issue
12
Abstract
This work presents a computationally efficient approach for extracting compact model parameters with minimal training requirements. Bayesian optimization (BO) is employed in multiple stages to predict the optimum compact model parameters. Initially, the methodology is applied to the MIT virtual source model (MVS 2.0) for extremely thin silicon-on-insulator (ETSOI) devices, nanosheet FETs (NsFETs), and MoS<inf>2</inf>-based 2-D material-based FETs (2DFETs). Subsequently, it is demonstrated on the Berkeley short-channel IGFET model (BSIM) common multigate (CMG) compact model for NsFETs. Through sequential processing, adaptive sampling, successive domain reduction, and fine-tuned objective functions, the framework achieves precise and efficient fitting of both global and local model parameters across a range of devices, all in a reduced number of iterations, irrespective of the compact model used.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/29102
Subjects
2-D material-based FET (2DFET) | Bayesian optimization (BO) | Berkeley short-channel IGFET model (BSIM) common multigate (CMG) | compact model | extremely thin silicon-on-insulator (ETSOI) | MIT virtual source (MVS) model | nanosheet FET (NsFET) | parameter extraction
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify