Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Mathematics
  4. MATH Publications
  5. On semi-finite vector bundles with connection over Kahler manifolds
 
  • Details

On semi-finite vector bundles with connection over Kahler manifolds

Source
arXiv
Date Issued
2025-08
Author(s)
Amrutiya, Sanjay
Biswas, Indranil
DOI
10.48550/arXiv.2508.17048
Abstract
Let X be a compact connected K¨ahler manifold. We consider the category C EC(X) of flat holomorphic connections (E, ∇E) over X satisfying the condition that the underlying holomorphic vector bundle E admits a filtration of holomorphic subbundles preserved by the connection ∇E such that the monodromy of the induced connection on each successive quotient has finite image. The category C EC(X), equipped with the neutral fiber functor that sends any object (E, ∇E) to the fiber Ex0 , where x0 ∈ X is a fixed point, defines a neutral Tannakian category over C. Let ϖEC(X, x0) denote the affine group scheme corresponding to this neutral Tannakian category C EC(X). Let π EN(X, x0) be an extension of the Nori fundamental group scheme over C [8]. We show that π EN(X, x0) is a closed subgroup scheme of ϖEC(X, x0). Finally, we discuss an example illustrating that if X is not K¨ahler, then the natural homomorphism π EN(X, x0) −→ ϖEC(X, x0) might fail to be an embedding.
URI
http://repository.iitgn.ac.in0/handle/IITG2025/33069
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify