Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Electrical Engineering
  4. EE Publications
  5. K-means Clustering with ANN based Classification to Predict Current-Voltage Characteristics of Advanced FETs
 
  • Details

K-means Clustering with ANN based Classification to Predict Current-Voltage Characteristics of Advanced FETs

Source
Proceedings of the IEEE International Conference on VLSI Design
Author(s)
O., Maheshwari, Om
D., Vyas, Dev
N.R., Mohapatra, Nihar Ranjan  
DOI
10.1109/VLSID60093.2024.00008
Start Page
19-01-1900
End Page
24
Abstract
In this work, we proposed a novel data-based methodology using artificial neural network (ANN) based classifier to predict current-voltage (I-V) characteristics of advanced FETs. The K-means clustering is employed to cluster and map the transistor drain current samples to centroids. This flexible and data dependent clustering enables accurate prediction over a wide parameter space for all regions of transistor operation. The classifier along with Savitzky-Golay filter predicts the I-V characteristics and the derivatives of I-V characteristics with an accuracy of 98%, outperforming the ANN regressor on a common test set. By utilizing the proposed model, an I-V characteristics can be predicted 8000 times faster as compared to an industry-standard TCAD tool. � 2024 Elsevier B.V., All rights reserved.
Unpaywall
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85190388601&doi=10.1109%2FVLSID60093.2024.00008&partnerID=40&md5=fa40a11ed9293c0b9a0daa8894122b5c
http://repository.iitgn.ac.in/handle/IITG2025/29355
Keywords
Classification (of information)
Current voltage characteristics
Drain current
Forecasting
K-means clustering
Accurate prediction
Clusterings
Current samples
Current-voltage
Current-voltage characteristics
Data dependent
K-means++ clustering
Nanosheet FET
Network-based
Parameter spaces
Neural networks
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify