Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Computer Science and Engineering
  4. CSE Publications
  5. Recent advancements in self-supervised paradigms for visual feature representation
 
  • Details

Recent advancements in self-supervised paradigms for visual feature representation

Source
arXiv
Date Issued
2021-11-01
Abstract
We witnessed a massive growth in the supervised learning paradigm in the past decade. Supervised learning requires a large amount of labeled data to reach state-of-the-art performance. However, labeling the samples requires a lot of human annotation. To avoid the cost of labeling data, self-supervised methods were proposed to make use of largely available unlabeled data. This study conducts a comprehensive and insightful survey and analysis of recent developments in the self-supervised paradigm for feature representation. In this paper, we investigate the factors affecting the usefulness of self-supervision under different settings. We present some of the key insights concerning two different approaches in self-supervision, generative and contrastive methods. We also investigate the limitations of supervised adversarial training and how self-supervision can help overcome those limitations. We then move on to discuss the limitations and challenges in effectively using self-supervision for visual tasks. Finally, we highlight some open problems and point out future research directions
URI
http://arxiv.org/abs/2111.02042
http://repository.iitgn.ac.in/handle/IITG2025/19746
Subjects
Computer Vision and Pattern Recognition
Machine Learning
Artificial Intelligence
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify