Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Physics
  4. PHY Publications
  5. First order dissipative hydrodynamics and viscous corrections to the entropy four-current from an effective covariant kinetic theory
 
  • Details

First order dissipative hydrodynamics and viscous corrections to the entropy four-current from an effective covariant kinetic theory

Source
Journal of Physics G Nuclear and Particle Physics
ISSN
09543899
Date Issued
2020-08-01
Author(s)
Bhadury, Samapan
Kurian, Manu
Chandra, Vinod  
Jaiswal, Amaresh
DOI
10.1088/1361-6471/ab907b
Volume
47
Issue
8
Abstract
The first order hydrodynamic evolution equations for the shear stress tensor, the bulk viscous pressure and the charge current have been studied for a system of quarks and gluons, with a non-vanishing quark chemical potential and finite quark mass. The first order transport coefficients have been obtained by solving an effective Boltzmann equation for the grand-canonical ensemble of quasiquarks and quasigluons. We adopted temperature dependent effective fugacity for the quasiparticles to encode the hot QCD medium effects. The non-trivial energy dispersion of the quasiparticles induces mean field contributions to the transport coefficients whose origin could be directly related to the realization of conservation laws from the effective kinetic theory. Both the QCD equation of state and chemical potential are seen to have a significant impact on the quark-gluon plasma evolution. The shear and bulk viscous corrections to the entropy-four current have been investigated in the framework of the effective kinetic theory. The effect of viscous corrections to the entropy density have been quantified in the case of one dimensional boost-invariant expansion of the system. Further, the first order viscous corrections to the time evolution of temperature along with the description of pressure anisotropy and Reynolds number of the system have been explored for the longitudinal boost-invariant expansion.
Publication link
https://arxiv.org/pdf/1902.05285
URI
http://repository.iitgn.ac.in/handle/IITG2025/24072
Subjects
dissipative evolution | effective kinetic theory | entropy four-current | pressure anisotropy | quark-gluon plasma | Reynolds number
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify