Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Reprogramming M1-to-M2 Phenotype to Alleviate Inflammation: Using Liposomal Curcumin as a Tool to Redefine Macrophage Functionality
 
  • Details

Reprogramming M1-to-M2 Phenotype to Alleviate Inflammation: Using Liposomal Curcumin as a Tool to Redefine Macrophage Functionality

Source
ACS Applied Bio Materials
Date Issued
2023-07-17
Author(s)
Nasra, Simran
Shah, Tishira
Bhatt, Mahek
Chaudhari, Ramesh
Bhatia, Dhiraj  
Kumar, Ashutosh
DOI
10.1021/acsabm.3c00316
Volume
6
Issue
7
Abstract
The versatile nature of macrophages and their ability to switch between various activation states plays a pivotal role in both promoting and inhibiting inflammatory processes. In pathological inflammatory conditions, classically activated M1 macrophages are often associated with initiating and maintaining inflammation, while alternatively activated M2 macrophages are linked to the resolution of chronic inflammation. Achieving a favorable equilibrium between M1 and M2 macrophages is crucial for mitigating inflammatory environments in pathological conditions. Polyphenols are known to have strong inherent antioxidative capabilities, and curcumin has been found to reduce macrophage inflammatory reactions. However, its therapeutic efficacy is compromised due to its poor bioavailability. The present study aims to harness the properties of curcumin by loading it in nanoliposomes and enhancing the M1-to-M2 macrophage polarization. A stable liposome formulation was achieved at 122.1 ± 0.08 nm, and a sustained kinetic release of curcumin was observed within 24 h. The nanoliposomes were further characterized using TEM, FTIR, and XRD, and the morphological changes in macrophage cells, RAW264.7, were observed in SEM, indicating a distinct M2-type phenotype after the treatment with liposomal curcumin. ROS may partially control macrophage polarization and be observed to decrease after treatment with liposomal curcumin. The nanoliposomes were able to successfully internalize in the macrophage cells, and an enhanced expression of ARG-1 and CD206 with a decrease in iNOS, CD80, and CD86 levels suggested the polarization of LPS-activated macrophages toward the M2 phenotype. Also, liposomal curcumin treatment dose-dependently inhibited TNF-α, IL-2, IFN-γ, and IL-17A at secretory levels and simultaneously increased the levels of cytokines like IL-4, IL-6, and IL-10.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/26719
Subjects
chronic inflammation | curcumin | cytokines | enhanced delivery | liposome | macrophage switching
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify