Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run
Source
Physical Review Letters
ISSN
00319007
Date Issued
2017-03-24
Author(s)
Abbott, B. P.
Abbott, R.
Abbott, T. D.
Abernathy, M. R.
Acernese, F.
Ackley, K.
Adams, C.
Adams, T.
Addesso, P.
Adhikari, R. X.
Adya, V. B.
Affeldt, C.
Agathos, M.
Agatsuma, K.
Aggarwal, N.
Aguiar, O. D.
Aiello, L.
Ain, A.
Ajith, P.
Allen, B.
Allocca, A.
Altin, P. A.
Ananyeva, A.
Anderson, S. B.
Anderson, W. G.
Appert, S.
Arai, K.
Araya, M. C.
Areeda, J. S.
Arnaud, N.
Arun, K. G.
Ascenzi, S.
Ashton, G.
Ast, M.
Aston, S. M.
Astone, P.
Aufmuth, P.
Aulbert, C.
Avila-Alvarez, A.
Babak, S.
Bacon, P.
Bader, M. K.M.
Baker, P. T.
Baldaccini, F.
Ballardin, G.
Ballmer, S. W.
Barayoga, J. C.
Barclay, S. E.
Barish, B. C.
Barker, D.
Barone, F.
Barr, B.
Barsotti, L.
Barsuglia, M.
Barta, D.
Bartlett, J.
Bartos, I.
Bassiri, R.
Basti, A.
Batch, J. C.
Baune, C.
Bavigadda, V.
Bazzan, M.
Beer, C.
Bejger, M.
Belahcene, I.
Belgin, M.
Bell, A. S.
Berger, B. K.
Bergmann, G.
Berry, C. P.L.
Bersanetti, D.
Bertolini, A.
Betzwieser, J.
Bhagwat, S.
Bhandare, R.
Bilenko, I. A.
Billingsley, G.
Billman, C. R.
Birch, J.
Birney, R.
Birnholtz, O.
Biscans, S.
Biscoveanu, A. S.
Bisht, A.
Bitossi, M.
Biwer, C.
Bizouard, M. A.
Blackburn, J. K.
Blackman, J.
Blair, C. D.
Blair, D. G.
Blair, R. M.
Bloemen, S.
Bock, O.
Boer, M.
Bogaert, G.
Bohe, A.
Bondu, F.
Bonnand, R.
Abstract
A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω0<1.7×10-7 with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ∼33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.
