Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Mathematics
  4. MATH Publications
  5. Zeros of partial sums of L-functions
 
  • Details

Zeros of partial sums of L-functions

Date Issued
2018-07-01
Author(s)
Vatwani, Akshaa
Roy, Arindam
Abstract
We consider a certain class of multiplicative functions f:N?C. Let F(s)=??n=1f(n)n?s be the associated Dirichlet series and FN(s)=?n?Nf(n)n?s be the truncated Dirichlet series. In this setting, we obtain new Hal\'asz-type results for the logarithmic mean value of f. More precisely, we prove estimates for the sum ?xn=1f(n)/n in terms of the size of |F(1+1/logx)| and show that these estimates are sharp. As a consequence of our mean value estimates, we establish non-trivial zero-free regions for these partial sums FN(s).
In particular, we study the zero distribution of partial sums of the Dedekind zeta function of a number field K. More precisely, we give some improved results for the number of zeros up to height T as well as new zero density results for the number of zeros up to height T, lying to the right of R(s)=?, where ?>1/2.
URI
http://repository.iitgn.ac.in/handle/IITG2025/20046
Subjects
Number Theory
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify