Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Biological Sciences and Engineering
  4. BSE Publications
  5. Interference between competing motor memories developed through learning with different limbs
 
  • Details

Interference between competing motor memories developed through learning with different limbs

Source
Journal of Neurophysiology
ISSN
00223077
Date Issued
2018-09-01
Author(s)
Kumar, Neeraj
Kumar, Adarsh
Sonane, Bhoomika
Mutha, Pratik K.  
DOI
10.1152/jn.00905.2017
Volume
120
Issue
3
Abstract
Learning from motor errors that occur across different limbs is essential for effective tool use, sports training, and rehabilitation. To probe the neural organization of error-driven learning across limbs, we asked whether learning opposing visuomotor mappings with the two arms would interfere. Young right-handers first adapted to opposite visuomotor rotations A and B with different arms and were then reexposed to A 24 h later. We observed that relearning of A was never faster nor were initial errors smaller than prior A learning, which would be expected if there was no interference from B. Rather, errors were greater than or similar to, and learning rate was slower than or comparable to, previous A learning depending on the order in which the arms learned. This indicated robust interference between the motor memories of A and B when they were learned with different arms in close succession. We then proceeded to uncover that the order-dependent asymmetry in performance upon reexposure resulted from asymmetric transfer of learning from the left arm to the right but not vice versa and that the observed interference was retrograde in nature. Such retrograde interference likely occurs because the two arms require the same neural resources for learning, a suggestion consistent with that of our past work showing impaired learning following left inferior parietal damage regardless of the arm used. These results thus point to a common neural basis for formation of new motor memories with different limbs and hold significant implications for how newly formed motor memories interact. NEW & NOTEWORTHY In a series of experiments, we demonstrate robust retrograde interference between competing motor memories developed through error-based learning with different arms. These results provide evidence for shared neural resources for the acquisition of motor memories across different limbs and also suggest that practice with two effectors in close succession may not be a sound approach in either sports or rehabilitation. Such training may not allow newly acquired motor memories to be stabilized.
Publication link
https://journals.physiology.org/doi/pdf/10.1152/jn.00905.2017
URI
http://repository.iitgn.ac.in/handle/IITG2025/22770
Subjects
Generalization | Interlimb transfer | Motor learning | Retrograde interference | Visuomotor adaptation
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify