Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Generalizations of sturm-picone theorem for second-order nonlinear differential equations
 
  • Details

Generalizations of sturm-picone theorem for second-order nonlinear differential equations

Source
Taiwanese Journal of Mathematics
ISSN
10275487
Date Issued
2013-02-06
Author(s)
Tyagi, J.  
DOI
10.11650/tjm.17.2013.2074
Volume
17
Issue
1
Abstract
The goal of this paper is to show a generalization to Sturm-Picone theorem for a pair of second-order nonlinear differential equations (p<inf>1</inf>(t)x '(t))' + q1(t)f1(x(t)) = 0. (p<inf>2</inf>(t)y '(t))' + q<inf>2</inf>(t)f<inf>2</inf>(y(t)) = 0, t<inf>1</inf> < t < t<inf>2</inf>. This work generalizes well-known comparison theorems [C. Sturm, J. Math. Pu res.Appl. 1 (1836), 106-186; M. Picone,Ann. Scoula Norm. Sup. Pisa 11 (1909) 39; W. Leighton, Proc. Amer.Math. Soc.13 (1962), 603-610], which play a key role in the qualitative behavior of solutions. We establish the generalization to a pair of nonlinear singular differential equations and elliptic partial differential equations also. We show generalization via the quadratic functionals associated to the above pair of equations. The celebrated Sturm-Picone theorem for a pair of linear differential equations turns out to be a particular case of our result.
Publication link
https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-17/issue-1/GENERALIZATIONS-OF-STURM-PICONE-THEOREM-FOR-SECOND-ORDER-NONLINEAR-DIFFERENTIAL/10.11650/tjm.17.2013.2074.pdf
URI
http://repository.iitgn.ac.in/handle/IITG2025/21171
Subjects
Comparison theorem | Elliptic partial differential equations | Oscillatory as well as nonoscillatory behavior | Singular equation | Zeros
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify