Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Electrical Engineering
  4. EE Publications
  5. Addressing Uncertainties within Active Learning for Industrial IoT
 
  • Details

Addressing Uncertainties within Active Learning for Industrial IoT

Source
7th IEEE World Forum on Internet of Things Wf Iot 2021
Date Issued
2021-06-14
Author(s)
Agarwal, Deepesh
Srivastava, Pravesh
Martin-Del-Campo, Sergio
Natarajan, Balasubramaniam
Srinivasan, Babji
DOI
10.1109/WF-IoT51360.2021.9595397
Abstract
Internet of Things (IoT) is a key enabler of Industry 4.0 with networked devices providing sensor data to help manage, automate, streamline and optimize assets, operations and processes. In such industrial IoT settings, reliability and process experts spend a considerable amount of time in creating accurate ground-truth data to assist with the inferencing capabilities of Artificial Intelligence (AI) engines. This process can be time-consuming and sometimes inaccurate, depending on the complexity of data. Accurate expert annotated data is the foundation for many AI applications because data needs to be classified on several bases, for instance into 'normal', 'abnormal' or 'pre-abnormal' states. Such problem formulations can be appropriately addressed using Active Learning (AL) techniques. We propose an AL framework capable of handling two practical challenges: oracle uncertainty and quantification of model performance in the absence of ground truth. Consequently, the proposed approach addresses uncertainties within AL techniques by fusing information pertaining to expertise levels of the human annotators and their confidence levels corresponding to the annotation provided.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/25398
Subjects
Active Learning | AI engines | Confidence Scores | Industrial IoT | Industry 4.0 | Oracle Uncertainty
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify