Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Physics
  4. PHY Publications
  5. Improving Bounds on Invisible Branching Ratio of the Higgs with Deep Learning
 
  • Details

Improving Bounds on Invisible Branching Ratio of the Higgs with Deep Learning

Source
Springer Proceedings in Physics
ISSN
09308989
Date Issued
2022-01-01
Author(s)
Ngairangbam, Vishal S.
DOI
10.1007/978-981-19-2354-8_53
Volume
277
Abstract
We study the prospect of constraining invisible branching ratio of the Higgs boson in the vector boson fusion channel using deep learning techniques.Taking advantage of the differing QCD radiation patterns between signal and background, we find that modern machine learning techniques have the capability of significantly outperforming traditional analyses.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/26279
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify