Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Civil Engineering
  4. CE Publications
  5. Experiments for the role of sliding connection in rigid faced GRS walls under transverse relative settlement
 
  • Details

Experiments for the role of sliding connection in rigid faced GRS walls under transverse relative settlement

Source
Soils and Foundations
ISSN
00380806
Date Issued
2025-02-01
Author(s)
Kolli, Mohan Krishna
Prashant, Amit  
DOI
10.1016/j.sandf.2024.101557
Volume
65
Issue
1
Abstract
The transverse relative settlement of reinforced fill and fascia induces reinforcement loads additional to service loads in Geosynthetic Reinforced Soil (GRS) Walls. The fascia-reinforcement connections need due attention in such conditions for both strength and serviceability considerations. A sliding connection is an alternative to avoid the buildup of high reinforcement connection loads under the relative settlement. 1-g model tests were carried out in an in-house developed relative settlement simulator tank on full-height panel rigid fascia (RF) GRS walls with two types of conventional connection systems. The sliding connection system was developed and proposed for RF-GRS walls, and its performance was assessed under the relative settlement of fill. In RF-GRS walls with conventional connection systems, the maximum tensile strains increased more than 200 times in bottom reinforcement layers under the relative settlement of 0 to 200 mm compared to the end of the construction. The developed sliding connection systems reduced the stress concentrations at the connection and allowed almost free settlement of the fill relative to the fascia. The maximum reinforcement strains were reduced up to 50 times compared to conventional non-sliding connections under the relative settlement of 0 to 200 mm. Hence, the sliding connection systems are recommended in conditions where the relative settlement of fascia and fill is expected to affect RF-GRS walls’ performance.
Publication link
https://doi.org/10.1016/j.sandf.2024.101557
URI
http://repository.iitgn.ac.in/handle/IITG2025/28268
Subjects
1-g model tests | Full-height panel | GRS walls | Non-sliding connection | Sliding connection | Transverse relative settlement
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify