Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Chemistry
  4. CH Publications
  5. Enhanced capacitance of MXene synthesized through safer route and its composite with amino graphene oxide
 
  • Details

Enhanced capacitance of MXene synthesized through safer route and its composite with amino graphene oxide

Source
Materials Chemistry and Physics
ISSN
02540584
Date Issued
2025-02-01
Author(s)
Karmakar, Mrinmoy
Swain, Mukul
Punyasloka, Saibrata
Mondal, Biswajit  
Noriyoshi, Matsumi
Ghoroi, Chinmay  
DOI
10.1016/j.matchemphys.2024.130187
Volume
331
Abstract
Two-dimensional (2D) MXene has received a lot of attention recently due to its outstanding mechanical, electrical, and thermal stability. However, poor specific capacitance severely limits its application towards supercapacitor. Moreover, the existing hazardous synthesis route of MXene is also a concern in the scientific community. On the other hand, amino graphene oxide (AGO) has very high electrical properties yet it is thermally unstable beyond 160 °C. Therefore, the present work reports a novel composite consisting of MXene and AGO, i.e., MAC, capable of exhibiting superior electrical properties along with the elevated thermal stability. Importantly, the MXene has been synthesized by a greener technology by using a mixture of concentrated HCl and NH<inf>4</inf>F to produce HF (etching agent) in situ rather than its ex situ addition. The formation of MAC is confirmed from microscopic (FE-SEM), thermal (TGA), diffractometric (XRD), spectroscopic (FTIR and XPS), and BET analyses. The thermogravimetric (TG) result shows that there is a significant improvement in thermal stability of AGO in the MAC. Moreover, synthesized MXene using safer route and MAC shows significant improvement in specific capacitance (2084.39 F g<sup>−1</sup> at scan rate of 5 mV s<sup>−1</sup> in PBS buffer solution) which is approximately twice than most of the reported capacitance in the literature. The improved thermal and electrochemical properties of MXene-AGO composite enhance its the potential use as supercapacitor.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/28549
Subjects
2D-materials | Amino graphene oxide | MXene | Specific capacitance | Supercapacitor
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify