Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Biological Sciences and Engineering
  4. BSE Publications
  5. Application of genome editing in plant reproductive biology: recent advances and challenges
 
  • Details

Application of genome editing in plant reproductive biology: recent advances and challenges

Source
Plant Reproduction
ISSN
21947953
Date Issued
2024-12-01
Author(s)
Gawande, Nilesh D. 
Bhalla, Hemal
Watts, Anshul
Shelake, Rahul Mahadev
Sankaranarayanan, Subramanian  
DOI
10.1007/s00497-024-00506-w
Volume
37
Issue
4
Abstract
Key message: This comprehensive review underscores the application of genome editing in plant reproductive biology, including recent advances and challenges associated with it. Abstract: Genome editing (GE) is a powerful technology that has the potential to accelerate crop improvement by enabling efficient, precise, and rapid engineering of plant genomes. Over the last decade, this technology has rapidly evolved from the use of meganucleases (homing endonucleases), zinc-finger nucleases, transcription activator-like effector nucleases to the use of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas), which has emerged as a popular GE tool in recent times and has been extensively used in several organisms, including plants. GE has been successfully employed in several crops to improve plant reproductive traits. Improving crop reproductive traits is essential for crop yields and securing the world's food supplies. In this review, we discuss the application of GE in various aspects of plant reproductive biology, including its potential application in haploid induction, apomixis, parthenocarpy, development of male sterile lines, and the regulation of self-incompatibility. We also discuss current challenges and future prospects of this technology for crop improvement, focusing on plant reproduction.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/28634
Subjects
CRISPR/Cas | Crop improvement | Genome editing | Plant reproduction
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify