Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Computer Science and Engineering
  4. CSE Publications
  5. A Unified Platform to Evaluate STDP Learning Rule and Synapse Model Using Pattern Recognition in a Spiking Neural Network
 
  • Details

A Unified Platform to Evaluate STDP Learning Rule and Synapse Model Using Pattern Recognition in a Spiking Neural Network

Source
Lecture Notes in Computer Science
ISSN
03029743
Date Issued
2026-01-01
Author(s)
Maskeen, Jaskirat Singh
Lashkare, Sandip  
DOI
10.1007/978-3-032-04558-4_41
Volume
16068 LNCS
Abstract
We develop a unified platform to evaluate Ideal, Linear, and Non-linear Pr<inf>0.7</inf>Ca<inf>0.3</inf>MnO<inf>3</inf> memristor-based synapse models, each getting progressively closer to hardware realism, alongside four STDP learning rules in a two-layer SNN with LIF neurons and adaptive thresholds for five-class MNIST classification. On MNIST with small train set and large test set, our two-layer SNN with ideal, 25-state, and 12-state non-linear memristor synapses achieves 92.73 %, 91.07 %, and 80 % accuracy, respectively, while converging faster and using fewer parameters than comparable ANN/CNN baselines.
URI
http://repository.iitgn.ac.in/handle/IITG2025/33794
Keywords
MNIST Classification | Neuromorphic Computing | Pattern Recognition | Spike-Timing-Dependent-Plasticity | Spiking Neural Networks | Synapse Models
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify